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1. Introduction

The sudden depressurisation and the rapid ¯ow of a liquid through a break in a pipe is a
dramatic situation that may happen not only in nuclear plants (loss of coolant accident) but
also in pipelines ®lled with readily boiling hydrocarbons and chemical plants ®lled with a gas-
saturated liquid. Special features of such explosive ¯ows come about when the pressure
decreases below the saturation value. The resulting bubbly mixture happens to have an
anomalously low velocity of sound and the discharge of boiling or degassing liquids is always
accompanied by important gas-dynamic e�ects. In most situations, the pipe has a short length,
the discharge is very quick, and the phenomena are dominated by the inertia of the mixture
and quasi-adiabatic processes in the bubbles. However, for longer channels (such as those met
in petroleum industry) this ®rst and well-known regime (Edwards and O'brien, 1970;
Gubaidullin and Ivandeev, 1978; Shagapov, 1979; Nigmatulin, 1991; Nigmatulin and
Soplenkov, 1994) is followed by a second one in which the dominant role is played by the wall
friction and the bubbly mixture evolves under saturated conditions. Since the volumetric
content of the gaseous phase is steadily increasing in the discharge process, a third regime can
happen in very long pipes, in which the bubbly mixture is replaced by a slug±liquid mixture or
even by a droplet±gas mixture. The model to be presented hereafter concerns the second
regime only, and is limited to bubbles volume fractions less than 0.2 (approximately). In
Section 2 we show that the bubbly mixture can be represented by a simple equation of state in
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the barotropic form r�p�: The relevant mass and momentum equations are obtained in Section
3 and they result in a single non-linear equation describing the evolution of the pressure with
space and time. In Section 4 we ®nd the pressure pro®les in the broken pipe as well as the
discharge out¯ow as a function of time. When the pipe is connected to a reservoir, the dis
charge process ends with a stationary out¯ow calculated in Section 5.

2. Equation of state for close-to-saturation bubbly mixtures

2.1. Vapour±liquid mixtures

The mean mass r per unit volume of the mixture can be written as 1=r � x=rG8� �1ÿ
x�=rL8 where x is the mass-fraction of the vapour phase, while rL8 and rG8 are the true mass
densities of liquid and vapour, respectively. rL8 is a function of the average pressure and
temperature of the liquid phase, which are generally di�erent from the average pressure and
temperature of the vapour phase, the two variables on which rG8 depends. This suggests that r
is generally a complicated function of a large number of variables. In this section, we will
brie¯y describe the conditions to be met for the mean density of the mixture to be a function
of the average pressure p only, and we will obtain an explicit expression for the equation of
state r�p�:
The average pressures of the two phases are generally di�erent because, in the situations to

be described, the vapour bubbles are expanding. However, provided we are not interested in
the very ®rst stage of bubble expansion, that di�erence is very small when compared to the
mean pressure of the mixture. Similarly, a temperature di�erence always exists between the two
phases, because the vapour is produced under saturation conditions, while the liquid is likely
to be in a superheated state during the depressurization process. However, if we discard the
initial stage of bubble growth, the amount of interfaces per unit volume will be important, the
energy exchanges between the two phases will be e�cient, and the di�erence between the two
average temperatures will be small when compared to the mean temperature T of the mixture.
Lastly, despite the fact that bubbles move with an average velocity di�erent from that of the
¯uid, the relative velocity is much smaller than the mixture velocity in the discharge process.
To sum up, a single velocity, a single temperature and a single pressure are enough to describe
the bubbly mixture in the second regime. Moreover, the thermodynamic state of the mixture
will always keep close to saturation conditions, so that T is connected to p as T � Ts�p�: Then,
the Clausius±Clapeyron relation can be used to obtain rL8=r � 1� �rL8x � `=Ts�dTs=dp, where
`�p� is the speci®c heat of evaporation. At this point, r is a function of p and x. To proceed
further, let us consider the speci®c enthalpy of the mixture which can be written as

i � iL � x�iG ÿ iL� � i0 � cL

ÿ
Ts�p� ÿ T0

�� x � `�p�, �2:1�
where cL is the speci®c heat of the liquid and i0 is the speci®c enthalpy of the liquid in the
initial state �p0, T0 � Ts�p0�). The evolution of i is described by the energy balance of the
mixture. The change of enthalpy due to the pressure drop and the increasing vapour mass
fraction is much larger than the heat exchanges through the walls of the pipe and also much
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larger than the viscous heat production. As a consequence, the energy balance is reduced to its
simple non-dissipative form rdi=dt � dp=dt, or r@ i=@pjxdp=dt� r@ i=@xjpdx=dt � dp=dt since i is
a function of p and x only. Because our model holds for a bubbly mixture for which r >> rG8,
one deduces r@ i=@pjx � rcLdTs=dp � �r=rG8��cLTs=`� � 1: As a consequence, the energy
balance amounts to the remarkably simple result

di=dt � 0 or i � i0: �2:2�
According to Eqs. (2.1) and (2.2), the mass fraction is a function of pressure given by

x � cL�T0 ÿ Ts�=`: �2:3�
It is clear that this result holds at any location in the ¯ow where p < p0 and that x � 0 when
p � p0: Substituting that result into the above expression for the mass density r, one ®nds the
bubbly mixture to be depicted by a rather simple equation of state r�p� which is given in
explicit form by

rL8=r � 1� rL8cL�T0=Ts ÿ 1�dTs=dp: �2:4�
If we neglect the compressibility of the liquid phase, the velocity of sound in the mixture is

C ÿ2 � r2cLT
ÿ2
s

�
T0�dTs=dp�2ÿTs�T0 ÿ Ts�d2Ts=dp

2
�
: �2:5�

For future reference, it is interesting to introduce C0, the velocity of sound for p close to the
initial pressure p0. In this case the second term on the right-hand side is negligible and one
obtains C0��rGo8=rL8�`0�cLT0�ÿ1=2, where `0 and rGo8 are the heat of evaporation and vapour
density at pressure p0. It happens that in a rather large pressure domain (far from the critical
point generally) the pressure dependence of ` can be neglected, and the saturation temperature
can be represented accurately as

Ts�p� � T �=Log
ÿ
p�=p

� �2:6�
where T� and p� are empirical parameters. As a consequence, both r=rL8 and C=C0 depend on
the ratio p=p0 only, a result that will prove important later on. We checked that the exact
numerical values extracted from tables of data for bubbly-water and bubbly-propane, are well
®tted by the approximate expressions (2.4), (2.5) and (2.6) in a large pressure and temperature
range, not too close to the critical point region.

2.2. Gas±liquid mixtures

The bubbly mixture is now made of a liquid containing some amount of dissolved gas and
of bubbles ®lled with the same gas. The liquid is assumed to be cold enough for its vapour to
have a negligible presence in the bubbles. For mostly the same reasons as for liquid±vapour
mixtures, we will neglect any di�erence between the average velocities, temperatures and
pressures of the two phases. At variance with liquid±vapour mixtures, the temperature of the
gas±liquid mixture will be supposed to be a constant, T0. Finally, to use Henri's law in non-
equilibrium situations, we will suppose that the number of bubbles is large enough for the
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di�usion of dissolved gas towards growing bubbles to be quasi-instantaneous. The mean
density of the mixture is written as r � erG8��1ÿ e�rL8 where e is the volume fraction of the
bubbles, while rG8 and rL8 are the true densities of the gas and liquid, respectively. The mass
fraction of the gas dissolved in the liquid is noted by k and this mass fraction is some function
of the liquid pressure. Since the gas exists as dissolved in the liquid or ®lling the bubbles, the
mass of gas per unit volume of the mixture is rG � erG8� k�1ÿ e�rL8: In the absence of any
signi®cant relative motion between the two phases, the mass fraction rG=r is a constant equal
to the mass fraction k0 at pressure p0. One deduces that the volume fraction of the bubbles is a
function of pressure given by

e � �k0 ÿ k�rL8
��k0 ÿ k�rL8� �1ÿ k0�rG8

�ÿ1
: �2:7�

This result corresponds to Eq. (2.3) for liquid±vapour mixtures. It is now clear that the mean
density of the mixture is a function of the mean pressure only, given by �1ÿ k�=r � �1 ÿ
k0�=rL8 � �k0 ÿ k�=rG8: We will henceforth limit ourselves to cases in which the initial mass
fraction of dissolved gas is very weak �k0 � 1). Then, k is simply proportional to p and one
can write (Henri's law) k=k0 � p=p0: If the gas in the bubbles behaves like an ideal gas, the
equation of state becomes

rL8=r � 1� K0�p0=pÿ 1�, �2:8�
(compare with Eq. (2.4)) and the related velocity of sound is (compare with Eq. (2.5))

C=C0 � �p=p0�
ÿ
rL8=r

�
: �2:9�

In these expressions, C0 is the velocity of sound when the pressure of the mixture is close to
p0and K0 is a dimensionless parameter. They are respectively de®ned as C0 � �p0=K0rL8�1=2 and
K0 � k0�rL8=rGo8� where rGo8 stands for the density of the gas at pressure p0. Note that for
gas±liquid mixtures (like for the vapour±liquid mixtures considered above), C/C0 and r=rL8 are
functions of p/p0 only. A liquid containing a foreign gas is said to be `ideal' when K0 � 1: Such
is the case of water saturated with carbon dioxide around T � 288 K. In this case, the
equation of state and the sound velocity have particularly simple expressions since r=rL8 �
p=p0 and C � C0 � �p0=rL8�1=2:

3. Mass and momentum equations

After the initial regime of nucleation and rapid growth, the bubbly mixture reaches a second
regime in which, as seen in the previous section, the di�erences of pressure, temperature and
velocity between the two phases can be neglected. Such a boiling or degassing mixture may be
described by a barotropic equation of state r�p� which already takes the balance of energy into
account. Then, the evolution of the mixture is completely described by a single mass balance
and a single momentum balance. If the evolution occurs in a long pipe, it is advisable Ð at
least as a ®rst step Ð to consider a one-dimensional description of the ¯ow involving variables
that are averaged over the cross-section and to write the mass and momentum balance as
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@r=@t� @rw=@z � 0, �3:1�
and

r�@w=@t� w@w=@z� � ÿ@p=@zÿ t�w� �3:2�
where t represents the average friction force per unit length of the pipe and w is the axial
velocity of the mixture. Although we have unsteady ¯ows in mind, we will use expressions for
the friction force that were established for steady situations. We admittedly suppose that the
characteristic time t� of the unsteady ¯ow is considerably less than the typical discharge time.
That approximation can be justi®ed along the lines sketched below (see Eqs. (3.5) and (3.6)).
The expression of the friction force depends on the Reynolds number of the ¯ow, and we will
distinguish between a linear and a quadratic law of resistance. This choice may appear
somewhat arbitrary but our main aim is to present two extreme cases of friction which, we
hope, will reveal some general features concerning discharges in pipes.
The ®rst friction law is relevant for pipes with relatively small cross-sections and it appears

as

t � rw=tw with tw � R2=8nL �3:3�
where R is the pipe radius and nL is the kinematic viscosity of the liquid. That expression for
tw holds provided the vapour or gas volume fraction is small. If not, the relaxation time will
depend on the volume fraction. This complication is not necessary in the situations considered
hereafter which concern volume fractions never exceeding 0.2 (approximately).
The second friction law is suited for larger pipes and is expressed as

t � rjwjw=zw with zw � R=l �3:4�
where l is a numerical coe�cient of order 10ÿ2, possibly depending on the roughness of the
pipe wall. In the momentum equation (3.2), the friction force competes with the acceleration
force. We now specify the conditions to be met for t�w� to play a dominant role. For the ¯ow
of a compressible mixture in a pipe, the velocity of sound C provides an estimate for the
spatial variations of the velocity. It is not di�cult to see that the acceleration term is negligible
provided disturbances develop in the pipe with characteristic times and distances much larger
than t� and z� de®ned as

t� � tw and z� � Ctw for the linear friction law �3:5�

t� � zw=C and z� � zw for the quadratic friction law: �3:6�
For example, in the problem of a sudden depressurization at some point of a long channel, the
inertial forces will be negligible after time t� and at distances larger than z� from the break
point. In that case, the mass and momentum balances can be gathered into a single equation
describing the evolution of pressure

@p=@t � C 2tw@
2p=@z2 and rw � ÿtw@p=@z �3:7�

or
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@p=@t � C 2z1=2w @�r@p=@z�1=2=@z and rjwjw � ÿzw@p=@z �3:8�
for the linear and the quadratic friction force, respectively. With a di�erent friction law t�w�, a
di�erent spatial derivative would have been found in the evolution equation for the pressure.
When limiting ourselves to the two particular cases Eqs. (3.7) and (3.8), we have in mind to
provide two speci®c but representative examples.

4. Main features of the discharge in long pipes

Let us consider a long pipe initially ®lled with a motionless liquid at pressure p0 and
temperature T0. The pipe is suddenly broken at some point where the pressure is reduced to an
external pressure pe < p0: The liquid begins to ¯ow out of the break and the process of boiling
or degassing is initiated. After a short initial stage, the two-phase mixture is described by Eqs.
(3.7a) or (3.8a) associated with the boundary and initial conditions

p � p0�t � 0, zr0� and p � pe�tr0, z � 0�: �4:1�
According to what was found in Section 2, the saturated bubbly mixture is characterized by a
density and a velocity of sound such that r=rL8 and C/C0 depend on the pressure ratio p/p0
only. It is then not di�cult to convince oneself that the pressure ®eld p(z, t ), solution of Eqs.
(3.7a) or (3.8a), displays a self-similar pro®le p(Z ) with Z � z=C0�twt�1=2 for the linear friction
force and Z � z=C0�C0zwrL8=p0�1=3t2=3 for the quadratic friction force. More generally, there is
a one-to-one correspondence between p(Z ) and t�w�, and the experimental results concerning
the propagation of pressure along the pipe can give an insight into the w-dependence of the
wall friction force.
There is a quantity which is still easier to measure experimentally, namely the rate of mass

¯owing out of the break, de®ned as q � ÿrwjz�0: According to Eqs. (3.7b) and (3.8b), the
mass out¯ow decreases in time as

q � tw@p=@zjz�0 � wL�p0=C0��1ÿ pe=p0��tw=t�1=2 �4:2�
for the linear friction force and

q � �zwr@p=@zjz�0�1=2� wQ�p0=C0��1ÿ pe=p0�2=3
ÿ
C0zwr`8=p0t

�1=3 �4:3�
for the quadratic friction force. Here wL and wQ are two scalars with values of order 1,
functions of the pressure ratio pe/p0 only. We conclude that the decrease of q(t ) obeys a power
law with an exponent in the range between ÿ1/3 and ÿ1/2. This range is not very broad but
there is again a one-to-one correspondence between the characteristic exponent and the wall
friction t�w�:
According to standard results of compressible ¯uid dynamics (Landau and Lifshitz, 1959, all

that has been deduced above is correct provided the external pressure pe is not too low as
compared to the initial pressure in the pipe p0, and more precisely, if it exceeds a lower value
pc, depending on p0 and de®ned as
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C�pc� �
� p0

pc

�
r�p�C�p��ÿ1 dp �4:4�

where C is the velocity of sound. For boiling water with initial pressure p0 � 2:5� 106 Pa, the
solution of the above relation is pc � 1:7� 105 Pa. For a degassing liquid described by Eqs.
(2.8) and (2.9), one can deduce pc from the simple equation �1� log Pc� / Pc � 1ÿ 1=K0, where
Pc � pc=p0: For example, Pc � 1=e for K0 � 1 and Pc � 0:44 for K0 � 1:7: When the pressure
at the break decreases to pc, the out¯ow is no longer described by Eq. (4.2) or Eq. (4.3), but
reaches a stationary `sonic' value to be described at the end of the next section.

5. Steady discharge out of a reservoir through a pipe

In the previous section, the ®nite length of the pipe was not taken into account and the
bubbly liquid out¯ow was steadily decreasing in time. A more usual situation is when the pipe
ends into a large reservoir, located at a distance L from the break point and with initial
pressure p0. The non-stationary process depicted above will ®nally merge into a stationary
discharge q0 provided by the reservoir. In the pipe itself, the stationary out¯ow is a solution of
the mass and momentum balances (3.1) and (3.2) written as

rw � q0 �5:1�

d
ÿ
q2
0=r� p

�
=dz � ÿt�w�: �5:2�

When explicit expressions are provided for the wall friction force and for the equation of state
r�p�, one can deduce q0 as a function of three parameters : the pipe length L, the external
pressure pe and the pressure pi at the inlet, i.e. at the junction of the pipe with the reservoir. As
an example, for gas±liquid mixtures with K0 � 1 and a quadratic friction law, one obtains

q2
0 �

ÿ
p2

i ÿ p2
e

�
=2C2

0

�
log�pi=pe� � L=zw

�
:

Details will not be given for other cases since there is no special di�culty in solving Eqs. (5.1)
and (5.2). All that can be said is that the dependence of q0 on pi ÿ pe is generally far from
linear. The next problem is to calculate pi as a function of the initial pressure p0 in the pipe
and the reservoir. When the steady ¯ow is due to the emptying of a huge reservoir with a free-
surface at pressure p0, the velocity at the inlet can be estimated by Bernoulli's relation as

q2
0=2r

2
i �

� p0

pi

�1=r�dp: �5:3�

A solution can be found for the steady ¯ow out of the reservoir provided one can ®nd an inlet
pressure pi verifying pe < pi < p0 and satisfying Eq. (5.3). Moreover, for the above results to
hold, the external pressure pe must be larger than the pressure pc de®ned at the end of Section
4. If pe happens to be lower than pc, the outlet pressure becomes pc, the outlet velocity is the
velocity of sound C�pc� and the mass ¯ow rate saturates at the maximum value q0 � r�pc�C�pc�:
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6. Conclusion

We have given a brief description of a particular stage of the explosive ¯ow of boiling or
degassing liquids. The main focus was on the so-called second regime, where the bubbly
mixture can be represented by a one-velocity, one-pressure and one-temperature compressible
¯uid. We strived to give model expressions for the equation of state, as well as complete
analytical solutions for the bubbly mixture motion. In particular, we analysed the non-
stationary discharge out of a long pipe. The self-similar pressure pro®les and the decrease of
the out¯ow as a power of time are some of the interesting analytical results of our 1D model
that could be observed in future experiments, or in future numerical simulations based on a
full 3D model for the discharge ¯ow.
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